ASYMPTOTIC NORMALITY FOR WEIGHTED SUMS OF LINEAR PROCESSES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables

Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...

متن کامل

Asymptotic normality of linear multiuser receiver outputs

This paper proves large-system asymptotic normality of the output of a family of linear multiuser receivers that can be arbitrarily well approximated by polynomial receivers. This family of receivers encompasses the single-user matched filter, the decorrelator, the minimum mean square error (MMSE) receiver, the parallel interference cancelers, and many other linear receivers of interest. Both w...

متن کامل

The Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables

In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...

متن کامل

Strong Laws for Weighted Sums of Negative Dependent Random Variables

In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.

متن کامل

Asymptotic Normality of Wavelet Estimators of the Memory Parameter for Linear Processes

We consider linear processes, not necessarily Gaussian, with long, short or negative memory. The memory parameter is estimated semi-parametrically using wavelets from a sample X1, . . . , Xn of the process. We treat both the log-regression wavelet estimator and the wavelet Whittle estimator. We show that these estimators are asymptotically normal as the sample size n → ∞ and we obtain an explic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Econometric Theory

سال: 2013

ISSN: 0266-4666,1469-4360

DOI: 10.1017/s0266466613000182